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1. Introduction 

The Computational Science Environment (CSE) provides users with a standard development 
environment as well as open source software tools and utilities for data analysis and 
visualization.  A significant advantage of using CSE is its ability to provide researchers and 
engineers with a development foundation capable of supporting their software project.  This is 
supported through a CSE subproject or “add-on.”  CSE provides a straightforward framework for 
creating and automatically testing add-ons along with the ability to customize the build process 
by specifying particular compilers, optimization flags, and external libraries to meet the 
researcher’s needs.  CSE add-ons are a simple way for researchers and developers to extend the 
common baseline set of tools, libraries, and applications in CSE.  The CSE team has worked 
closely with the Multiple Object Evolutionary Strategies (MOES) developers as well as the 
Multiscale Reactive Modeling’s (MSRM) Infrastructure team to design a modular build and test 
system that simplifies the entire build process and make the projects easier to maintain and 
modify. 

2. Configuration Management 

2.1 The Software Repository 

Source code management for the MSRM project is done through Git.  Git is a distributed version 
control system unlike Subversion (SVN), which is a centralized version control system.  Because 
Git is a distributed version control system, when a user performs a checkout (clone), every 
revision of every file is available as part of the local copy.  An additional benefit of Git is 
branching.  While branching is not unique to Git, one benefit is being able to completely remove 
a branch (there is no trace like there is in SVN), so branches can be easily created and discarded 
as necessary. 

Git Repository permissions are handled at the operating system (OS) and filesystem level 
through the use of Linux groups and Filesystem action control lists (ACLs)*.  Each project is 
designated a unique group name for the facilitation of permissions, only individuals designated 
by the project point of contact (POC) will be added to the group. 

                                                 
*The ACL is a list of permissions attached to an object. This list specifies which users or groups are granted permissions to an 

object and what actions can be performed on that object. 
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The following commands are used to provide a specific group with read and write permission to 
their repository: 

setfacl -R -m g:cse:rwX cse_stable 

find repo -type d | xargs setfacl -R -m d:g:cse:rwX 

There are two software repositories for each Atomistic add-on.  Each add-on has a development 
repository and a production repository.  All developers have read and write permissions to the 
development repository.  Only individuals deploying the add-on have full access to the 
production repository.  Each of these repositories is built, tested, and reported on nightly.  The 
production repository is built, tested, and deployed on various high performance computing 
(HPC) systems as directed.  

2.2 Software Configuration Management 

Because the team is “geographically distributed,” an online interface was necessary to simplify 
communication.  The team uses Redmine†, an open-source, database-driven project management 
Web application.  The Redmine application offers a substantial preconfigured solution that is 
easy to setup and can be customized to better fit a particular project.  Redmine was chosen as it 
provides a number of features that are of interest for team interaction.  The most significant 
features were the ability to support multiple projects, a customizable issue tracking system,  
e-mail and news notifications, Wiki support, access control, and integration with several source 
code management systems (e.g., Git, as described previously).  Redmine’s tracking system 
provides a simple solution for managing bugs, general support issues, and requests for new 
features allowing the entire team to determine priorities, provide updates, and know the status of 
any outstanding items.  As items in the tracking system are updated, the responsible personnel 
and others with an interest are informed via e-mail.  Redmine also provides a common place for 
current source code via the connected Git repository, as well as code and user documentation via 
its Wiki and file storage features.  Collectively, these features reduce the time needed to oversee 
and manage multiple projects, allow the team to keep track of issues specific to their assigned 
projects, and provide a common place for project related communication. 

3. CMake and Modules 

The CSE MOES add-on uses CMake to drive build process.  CMake is an open-source cross 
platform build system with strong system introspection capabilities.  There are numerous macros 
distributed with CMake to discover what packages are installed on a system, their version 
numbers, and where these packages are installed.  Because the MOES code was needed by the 
team’s scientists on several different HPC architectures, the system introspection capabilities of 

                                                 
†Redmine Web site. http://www.redmine.org (accessed 2011). 
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CMake significantly simplified deployment.  There is a top level CMakeLists.txt file that 
includes all of the sub-packages as well as the module installation code. 

The following is from the top level CMakeLists.txt project it sets up the default installation 
prefix and includes all of the sub-package directories.  The CSE provides template files for the 
top level CMakeLists.txt file: 

# Add-on CSE_ADDON_CVS Packages 
cmake_minimum_required(VERSION 2.8) 
# The name of the build project 
project(CSE_ADDON_MOES) 
set(SUBPROJECT “moes”) 
set(HOME_DIR MOES) 
include(CTest) 
 
# Enable testing for the project 
ENABLE_TESTING() 
 
include(ExternalProject) 
set(base “${CMAKE_BINARY_DIR}/CMakeExternals”) 
set_property(DIRECTORY PROPERTY EP_BASE ${base}) 
 
# Find the CSE installation on this system 
 
find_path(CSE_HOME  Release  $ENV{CSE_HOME} /usr/cta/CSE $ENV{HOME}/CSE) 
list(APPEND CMAKE_MODULE_PATH “${CSE_HOME}/Misc/CMake”) 
find_package(CSE) 
# Default installation prefix is /home/userid, this can be changed at configure time  
# To change the Install prefix cmake -DMOES_INSTALL_PREFIX=/prefix/you/want 
set (MOES_INSTALL_PREFIX “$ENV{HOME}/${HOME_DIR}” CACHE PATH “Install 
Path”) 
set (CMAKE_INSTALL_PREFIX ${MOES_INSTALL_PREFIX} CACHE INTERNAL ““ 
FORCE) 
 
find_program(PATCH_PROGRAM patch 
        PATHS /usr/bin) 
 
# include all subdirectories 
add_subdirectory(airebo) 
add_subdirectory(lp_solve) 
add_subdirectory(reac) 
add_subdirectory(moes) 
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Modules are automatically built and installed with each CSE add-on.  Modules are a command-
line tool providing dynamic modification of a user’s environment, thus eliminating the need for 
the user to modify their own environment variables (PATH, LD_LIBRARY_PATH, 
PYTHONPATH) to compile, test, and run code.  The CSE team provides a default file for each 
module that is populated by package specific variable names at configure time. 

The MOES project installs the following modules for use by MOES developers and individuals 
performing batch runs using the MOES code: 

---------------------- /usr/cta/CSE.atomistic.2011-04-22/MOES/modules ----------------------- 
 

cse-msrm-atomistic/airebo/1.1      cse-msrm-atomistic/moes/1.0 
cse-msrm-atomistic/airebo/latest   cse-msrm-atomistic/moes/latest 

cse-msrm-atomistic/lp_solve/5.5    cse-msrm-atomistic/reac/1.2 
cse-msrm-atomistic/lp_solve/latest   cse-msrm-atomistic/reac/latest 

4. Automated Build and Test 

CTest is a testing tool distributed with CMake.  This tool can be used to automate building and 
testing of a project.  CTest can also submit testing results to a dashboard for display and review.  
CDash is a product distributed with Kitware’s CMake.  CDash is a Web-based, open-source 
software testing server.  CDash organizes and displays testing results on a simple, easy to 
understand Web page.  The immediate feedback that developers receive on the dashboard helps 
to encourage careful testing and code review prior to submitting code modifications to the 
repository. 

In order to submit to a local dashboard it is necessary to have a CTestConfig.cmake file.  The 
following is a basic sample of a CTestConfig.cmake file: 

set(CTEST_PROJECT_NAME “MOES_Development”) 
set(CTEST_NIGHTLY_START_TIME “21:00:00 EDT”) 
#use https 
set(CTEST_DROP_METHOD “https”) 
set(CTEST_DROP_SITE “your.web.dash.site”) 
set(CTEST_DROP_LOCATION “/CDash/submit.php?project=MOES_Development”) 
set(CTEST_DROP_SITE_CDASH TRUE) 
set(CTEST_CURL_OPTIONS 
“CURLOPT_SSL_VERIFYPEER_OFF;CURLOPT_SSL_VERIFYHOST_OFF”) 
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For the CSE MOES add-on, each package is tested individually and the entire project is also 
tested as a whole.  Because all of the packages in MOES use CMake to build, all of the 
regression tests leverage CTest.  The CTest output is stored locally in an extensible markup 
language (XML) file that gets submitted to the CDash quality assurance dashboard upon 
completion of the builds and tests.  In order to ensure that software modifications did not impact 
numerical accuracy, test results are automatically validated against a known set of values.  This 
verification is done through a bash script that gets executed by CTest; value tolerances can be set 
in this script if necessary.  The following line needs to be added to the CMakeLists.txt file enable 
testing for the project: 

enable_testing() 
The CMake tests are added to the build simply by adding the following lines to the 
CMakeLists.txt file, these lines call the bash scripts that execute the tests: 
add_test(TestMoesCalculate test_moes.sh) 
add_test(TestAireboDriver test_airebo.sh) 

Figure 1 shows the quality assurance dashboard reports the results of the test. 

 

Figure 1.  The quality assurance dashboard reports the results of the test. 
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5. Data Analysis and Visualization 

Using several of the tools available in CSE (Python, NumPy, PyQt, and Matplotlib), the CSE 
team worked with the MSRM Infrastructure team and the MOES developers to assist with the 
creation of data conversion and visualization programs.  A Python program was developed to 
translate the MOES output code into a CSV file that can be used by numerous spreadsheet and 
graphing packages.  A Python program was also developed to automatically generate graphs of 
the data output using Python, NumPy, and Matplotlib.  

Figures 2 and 3 shows example plots of the MOES data. 

 

Figure 2.  Example plot of MOES data. 

 

Figure 3.  Example plot of MOES data, zoomed to show more curve details. 
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6. Conclusion 

CSE offers a comprehensive software environment that is flexible, provides modern software 
application program interfaces (APIs), and supports development efforts scaling from individuals 
to large geographically dispersed teams.  An integral part of the CSE is the automated building, 
testing, and reporting system for all software development projects. The CSE “add-on” 
framework allows users and developers to create domain-specific capabilities outside of the 
system-level architecture. 
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List of Symbols, Abbreviations, and Acronyms 

ACLs action control lists  

APIs application program interfaces 

CSE Computational Science  

HPC high performance computing  

HPCMP High Performance Computing Modernization Program  

MOES Multiple Object Evolutionary Strategies  

MSRM Multiscale Reactive Modeling 

OS operating system  

POC point of contact 

SVN Subversion  

XML extensible markup language  
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